
Learning Smooth Humanoid Locomotion
through Lipschitz-Constrained Policies

Zixuan Chen∗1 Xialin He∗2 Yen-Jen Wang∗3 Qiayuan Liao3 Yanjie Ze4 Zhongyu Li3

S. Shankar Sastry3 Jiajun Wu4 Koushil Sreenath3 Saurabh Gupta2 Xue Bin Peng1,5
1Simon Fraser University 2UIUC 3UC Berkeley 4Stanford University 5NVIDIA ∗Equal Contribution

lipschitz-constrained-policy.github.io

Fig. 1: Lipschitz-constrained policies (LCP) provide a simple and general method for training policies to produce smooth
behaviors, which can be directly deployed on a wide range of real-world humanoid robots. Our policies exhibit robust
behaviors that can recover from external forces and walk across irregular terrain. For full videos, please visit the project
website.

Abstract— Reinforcement learning combined with sim-to-real
transfer offers a general framework for developing locomotion
controllers for legged robots. To facilitate successful deployment
in the real world, smoothing techniques, such as low-pass filters
and smoothness rewards, are often employed to develop policies
with smooth behaviors. However, because these techniques are
non-differentiable and usually require tedious tuning of a large
set of hyperparameters, they tend to require extensive manual
tuning for each robotic platform. To address this challenge and
establish a general technique for enforcing smooth behaviors,
we propose a simple and effective method that imposes a
Lipschitz constraint on a learned policy, which we refer to
as Lipschitz-Constrained Policies (LCP). We show that the
Lipschitz constraint can be implemented in the form of a
gradient penalty, which provides a differentiable objective
that can be easily incorporated with automatic differentiation
frameworks. We demonstrate that LCP effectively replaces the

need for smoothing rewards or low-pass filters and can be
easily integrated into training frameworks for many distinct hu-
manoid robots. We extensively evaluate LCP in both simulation
and real-world humanoid robots, producing smooth and robust
locomotion controllers. All simulation and deployment code,
along with complete checkpoints, is available on our project
page: https://lipschitz-constrained-policy.github.io.

I. INTRODUCTION

Humanoid research aims to develop intelligent, human-
like machines capable of autonomously operating in ev-
eryday environments [1]–[4]. One of the most fundamental
challenges in this field is achieving reliable mobility. De-
veloping robust locomotion controllers and adapting them to
real robots would greatly improve their capabilities.

https://lipschitz-constrained-policy.github.io
https://lipschitz-constrained-policy.github.io
https://lipschitz-constrained-policy.github.io
https://lipschitz-constrained-policy.github.io


Traditional model-based methods, such as Model Predic-
tive Control (MPC), necessitate precise system structure and
dynamics modeling, which is labor-intensive and challenging
to design. In contrast, model-free reinforcement learning
provides a straightforward end-to-end approach to devel-
oping robust controllers, significantly alleviating the neces-
sity for meticulous dynamics modeling and system design.
However, because model-free RL requires a large number
of samples through trial-and-error during training, which
cannot be performed in the real world, sim-to-real transfer
techniques are utilized to enable the successful deployment
of controllers in real-world environments. Combined with
sim-to-real techniques, model-free RL-based methods have
achieved great success in controlling quadruped robots and
humanoid robots [5]–[7].

However, due to the simplified dynamics and actuation
models used in simulation, the resulting models tend to
be nearly idealized, meaning that the motors can produce
the desired torques at any state. As a result, RL-based
policies trained in simulation are susceptible to developing
jittery behaviors akin to bang-bang control [8]. This results
in significant differences between actions in consecutive
timesteps, leading to excessively high output torques that
real actuators cannot produce. As such, these behaviors often
fail to transfer to real robots. Therefore, enforcing smooth
behaviors is crucial for successful sim-to-real transfer.

Previous systems use smoothing methods to enforce
smooth behaviors from a learned policy, such as smooth-
ness rewards or low-pass filters. Incorporating smoothness
rewards during training can be an effective approach to elic-
iting smoother behaviors. In robot locomotion, researchers
typically penalize joint velocities, joint accelerations, and
energy consumption [9]. Other approaches attempt to smooth
policy behavior by applying low-pass filters [10], [11]. How-
ever, smoothness rewards require careful tuning of weights
to balance smooth behavior with task completion, and low-
pass filters often dampen or limit exploration, causing extra
effort when training controllers for a new robot. Additionally,
the non-differentiable nature of smoothness rewards and low-
pass filters presents another limitation.

In this work, we introduce Lipschitz-Constrained Policies
(LCP), a general and differentiable method for encouraging
RL policies to develop smooth behaviors. LCP enforces a
Lipschitz constraint on the output actions of a policy with
respect to the input observations through a differentiable
gradient penalty. LCP can be implemented with only a
few lines of code and easily incorporated into existing
RL frameworks. We demonstrate that this approach can be
directly applied to train control policies for a diverse suite
of humanoid robots. Our experiments show that LCP can be
an alternative to non-differentiable smoothness techniques
such as smoothness rewards and low-pass filters. We also
demonstrate that LCP can be deployed zero-shot to several
real-world robots with different morphologies, indicating the
generalization of our method.

II. RELATED WORK

Legged robot locomotion has long been a crucial yet
challenging problem in robotics due to legged systems’
high dimensionality and instability. Classic model-based con-
trol methods have achieved impressive behaviors on legged
robots [12]–[14]. In recent years, learning-based methods
have shown great potential to automate the controller devel-
opment process, providing a general approach to building
robust controllers for quadrupedal locomotion [15]–[18],
bipedal locomotion [11], [19]–[21], and humanoid locomo-
tion [7], [22]–[24].

a) Sim-to-Real Transfer: One of the main challenges in
RL-based methods is sim-to-real transfer, where policies are
first trained in simulation and then deployed in real-world
environments. Substantial effort is often necessary to bridge
the domain gap between simulations and the real world, such
as developing high-fidelity simulators [25], [26], and incor-
porating domain randomization techniques during training
[18], [22], [27], [28]. Another widely adopted approach is
the teacher-student framework, where a privileged teacher
policy, with access to full state information, is trained first,
followed by the training of an observation-based student
policy through distillation [15], [20], [22], [24], [29]–[31].
To further facilitate sim-to-real transfer, our framework also
leverages a teacher-student framework [6], [16], [23], which
trains a latent representation of the dynamics based on the
observation history. These methods have been successful in
transferring controllers for both quadruped robots [9], [32],
[33], and humanoid robots [7], [23]. Some work also explores
utilizing a single policy to control robots with different
morphologies zero-shot in real world [34]. However, the
policy’s performance on real humanoid robots has yet to be
validated, and it is not easy to plug into any existing training
pipeline.

b) Learning Smooth Behaviors: Due to the simplified
dynamics of simulators, policies trained in simulation often
exhibit jittery behaviors that cannot be transferred to the
real world. Therefore, smooth policy behaviors are criti-
cal for successful sim-to-real transfer. Common smoothing
techniques include the use of smoothness rewards, such as
penalizing sudden changes in actions, degree of freedom
(DoF) velocities, DoF accelerations [24], [29], [31], [32],
[35], [36], and energy consumption [6], [9]. In addition to
smoothness rewards, low-pass filters have also been applied
to the output actions of a policy to ensure smoother be-
haviors [10], [11], [18], [37]. However, smoothness rewards
typically require careful manual design and tuning, while
low-pass filters often dampen policy exploration, resulting
in sub-optimal policies. These techniques are also generally
not directly differentiable, requiring sample-based gradient
estimators to optimize, such policy gradients.

c) Gradient Penalty: In this work, we propose a simple
and differentiable method to train RL policies that produce
smooth behaviors by leveraging a gradient penalty. Gradient
penalty is a common technique for stabilizing training of
generative adversarial network (GAN), which is susceptible



x

y

y=Kx

y=-Kx

y=f(x)

Lipschitz Continuity

Fig. 2: Lipschitz continuity is a method of quantifying the
smoothness functions. A Lipschitz continuous function is a
function whose rate-of-change is bounded by a constant K.

to vanishing or exploding gradients. Arjovsky et al. [38]
proposed the Wasserstein GAN (WGAN) using weight clip-
ping to stabilize training. However, weight clipping still
often results in poor model performance and convergence
issues. Gulrajani et al. [39] introduced the gradient penalty
(WGAN-GP) as an alternative to weight clipping, which
penalizes the norm of the discriminator’s gradient. Since its
introduction, the gradient penalty has become a widely used
regularization technique for GANs [40], [41]. For motion
control, gradient penalty has been an effective technique for
improving the stability of adversarial imitation learning. For
example, AMP [42], CALM [43], and ASE [44] all apply
a gradient penalty to regularize an adversarial discriminator,
which then enables a policy to imitate a large variety of
challenging motions. While these prior systems demonstrated
the effectiveness of gradient penalties as a regularizer for
discriminators, in this work, we show that a similar gradient
penalty can also be an effective regularizer to encourage
policies to produce smooth behaviors, which are then more
amenable for real-world transfer.

III. BACKGROUND

Our method leverages ideas from Lipschitz continuity
to train reinforcement learning policies to produce smooth
behaviors. This section will review some fundamental con-
cepts for Lipschitz continuity and reinforcement learning
to provide a comprehensive background of our proposed
method.

A. Lipschitz Continuity
Intuitively, Lipschitz continuity is a property that limits

how fast a function can change. This property is a good
way of characterizing the smoothness of a function. An
intuitive visualization is shown in Fig. 2. Formally, we give
the definition of Lipschitz continuity as follows:

Definition III.1 (Lipschitz Continuity). Given two metric
spaces (X, dX) and (Y, dY ), where dX denotes the metric
on the set X and dY is the metric on set Y , a function
f : X → Y is deemed Lipschitz continuous if there exists
a real constant K such that, for all x1 and x2 in X ,

dY (f(x1), f(x2)) ≤ KdX(x1,x2). (1)

Training Iterations

Gr
ad

ie
nt

 o
f P

ol
icy

Training with Smoothness Rewards

smoothness rewards
w.o. smoothness rewards

Fig. 3: Gradient of policies trained with and without smooth-
ness rewards. Policies with smoother behaviors also exhibit
smaller gradient magnitudes.

Any such K is referred to as a Lipschitz constant of
the function f [45]. A corollary that arises from Lipschitz
Continuity is that if the gradient of a function is bounded:

∥∇xf(x)∥ ≤ K, (2)

then this function f is Lipschitz continuous. However, it is
worth noting that the converse is not true.

B. Reinforcement Learning

In this work, our controllers are trained through reinforce-
ment learning, in which an agent interacts with the envi-
ronment according to a policy π to maximize an objective
function [46]. At each timestep t, the agent observes the state
st of the environment, and takes an action at according to
the policy π(at | st). This action then leads to a new state ac-
cording to the dynamics of the environment p(st+1 | st,at).
The agent receives a reward rt = r(st+1, st,at) at each step.
The agent’s goal is to maximize its expected return:

J(π) = Ep(τ |π)

[
T−1∑
t=0

γtrt

]
, (3)

where p(τ |π) represents the likelihood of the trajectory τ , T
denotes the time horizon, and γ is the discount factor.

IV. LIPSCHITZ-CONSTRAINED POLICIES

In this section, we introduce Lipschitz-Constrained Poli-
cies (LCP), a method for training policies to produce smooth
behaviors by incorporating a Lipschitz constraint during
training. We begin with a simple experiment to illustrate the
motivation behind our method. This is then followed by a
detailed description of our proposed method.

A. Motivating Example

We will first illustrate the motivation of LCP with a simple
experiment. We know that RL-based policies are prone to
producing jittery behaviors, and the most common method
for mitigating these behaviors is to incorporate smoothness
rewards during training. The smoothness of a function is
typically evaluated using the first derivative. Therefore, we
compare the ℓ2-norm of the gradient of policies trained
with and without smoothness rewards. Although no specific



technique is explicitly applied to regularize the policies’
gradient, the gradient trained with smoothness rewards is
significantly smaller than that of a policy trained without
smoothness rewards, as illustrated in Fig. 3. This fact in-
spires our proposed method, which explicitly regularizes the
gradient of the policy. We show that this simple method leads
to smooth behaviors, which can then facilitate successful
transfer to the real world.

B. Lipschitz Constraint as a Differentiable Objective

While smoothness rewards can mitigate jittery behaviors,
these reward functions can be complex to design, with a large
number of hyperparameters that require tuning. Furthermore,
these smoothness rewards are non-differentiable since they
are implemented as part of the underlying environment.
Therefore, they often need to be optimized through sampling-
based methods, such as policy gradients. This work proposes
a simple and differentiable smoothness objective for policy
optimization based on Lipschitz continuity.

Equation 2 stipulates that any function with bounded
gradients is Lipschitz continuous. Therefore, we can formu-
late a constrained policy optimization problem that enforces
Lipschitz continuity through a gradient constraint:

max
π

J(π)

s.t. max
s,a

[
∥∇s log π(a|s)∥2

]
≤ K2 (4)

where K is a constant and J(π) is the RL objective defined
in Equation 3. Since calculating the maximum gradient norm
across all states is intractable, we approximate this constraint
with an expectation over samples collected from policy
rollouts, following the heuristic from Schulman et al. [47]:

max
π

J(π)

s.t. Es,a∼D
[
∥∇s log π(a|s)∥2

]
≤ K2,

(5)

where D is a dataset consisting of state-action pairs (st,at)
collected from the policy. Next, to facilitate optimization with
gradient-based methods, the constraint can be reformulated
into a penalty by introducing a Lagrange multiplier λ:

min
λ≥0

max
π

J(π)− λ
(
Es,a∼D

[
∥∇s log π(a|s)∥2

]
−K2

)
.

(6)
To further simplify the objective, we set λgp as a manually
specified coefficient, and since K is a constant, this leads to
a simple differentiable gradient penalty (GP) on the policy:

max
π

J(π)− λgpEs,a∼D
[
∥∇s log π(a|s)∥2

]
. (7)

This gradient penalty can be easily implemented in any
reinforcement learning framework, requiring only a few
lines of code. The gradient penalty provides a simple and
differentiable alternative to smoothness rewards or low-pass
filters, which are not differentiable with respect to the policy
parameters. Our experiments show that LCP provides an
effective alternative to non-differentiable smoothing tech-
niques and can be directly used to train robust locomotion
controllers for a diverse cast of robots.

V. TRAINING SETUP

To evaluate the effectiveness of our method, we apply LCP
to train policies for a variety of humanoid robots, where
the task is for the robots to walk while following steering
commands.

a) Observations: The input observations to the policy
ot = [ϕt, ct, s

robot
t ,at−1] consists of a gait phase variable

ϕt ∈ R2 (a periodic clock signal represented by its sine and
cosine components), command ct, measured joint positions
and velocities srobot

t , and the previous output action of the
policy at−1. To enable robust sim-to-real transfer, the policy
also takes privileged information et as input, which consists
of the base mass, center of mass, motor strengths, and
root linear velocity. Observations ot are normalized with a
running mean and standard deviation before being passed as
input to the policy.

b) Commands: The command input to the policy ct =
[vcmd

x , vcmd
y , vcmd

yaw ] consists of the desired linear velocities
along x-axis vcmd

x ∈ [0m/s, 0.8m/s] and y-axis vcmd
y ∈

[−0.4m/s, 0.4m/s], and the desired yaw velocity vcmd
yaw ∈

[−0.6rad/s, 0.6rad/s], both are in the robot frame. During
training, commands are randomly sampled from their respec-
tive ranges every 150 timestep or when the environment is
reset.

c) Actions: The policy’s output actions specify target
joint rotations for all joints in the robot’s body, which are
then converted to torque commands by PD controllers with
manually specified PD gains.

d) Training: All policies are modeled using neural
networks and trained using the PPO algorithm [48]. The
policies are trained solely in simulation with domain random-
ization and then deployed directly on the real robots [27].
Sim-to-real transfer is performed using Regularized Online
Adaptation (ROA) [6], [32].

VI. EXPERIMENTS

LCP’s effectiveness is evaluated on a set of diverse hu-
manoid robots to show its generalization ability. We conduct
an extensive suite of simulation and real-world experiments,
comparing LCP to commonly used smoothing techniques
from prior systems.

A. Robot Platforms

We evaluate our framework on three real-world robots:
the human-sized Fourier GR1T1, Fourier GR1T2, Unitree
H1, and the smaller Berkeley Humanoid. We will first
provide an overview of each robot’s body structure. Then, our
experiments show that LCP is a general smoothing technique
that can be applied widely to several distinct robots.

a) Fourier GR1T1 & Fourier GR1T2: The Fourier
GR1T1 and Fourier GR1T2 have the same mechanical struc-
ture. They both comprise 21 joints, with 12 joints in the lower
body and 9 in the upper body. Notice that the torque limit
for the ankle roll joint is minimal; we treat this as a passive
joint during training and deploying. This means we control
19 joints of GR1 in total.



250M 500M
Samples

8

16

Action Rate ↓

250M 500M

2500

5000
DoF Acceleration ↓

250M 500M

30

60

DoF Velocity ↓

250M 500M
20

40

Energy ↓

No Smoothing Smoothness Rewards LCP (Ours)

Fig. 4: Smoothness metrics recorded over the course of training. LCP produces smooth behaviors that are comparable to
policies that are trained with explicit smoothness rewards.

0 200M 400M 600M
0

20

Ta
sk

 R
et

ur
ns

 ↑

Smoothness Methods

No Smoothing
Low-pass Filter
Smoothness Rew
LCP(Ours)

Fig. 5: Task returns of different smoothing methods.
LCP provides an effective alternative to other tech-
niques.

0 200M 400M 600M
0

20

Ta
sk

 R
et

ur
ns

 ↑

GP Weights

λgp = 0.0
λgp = 0.001

λgp = 0.002
λgp = 0.005

λgp = 0.01

Fig. 6: Task returns of LCP with different λgp. Exces-
sively large λgp may hinder policy learning.

b) Unitree H1: The Unitree H1 has 19 joints, with 10
joints in the lower body, 9 in the upper body, and 1 ankle
joint per leg. All joints are actively controlled.

c) Berkeley Humanoid: Berkeley Humanoid is a small
robot with a height of 0.85m [49]. It has 12 degrees of
freedom, with 6 joints in each leg and 2 joints in each ankle.

B. Results

To evaluate the effectiveness of LCP, we compare our
method to the following baselines:

• No smoothing: No smoothing techniques are applied
during training. This baseline demonstrates the necessity
of smoothing techniques for sim-to-real transfer;

• Smoothness rewards: Smoothness rewards are the
most commonly used smoothing method, where addi-
tional reward terms are incorporated into the reward
function to encourage smooth behaviors. These reward
functions are not directly differentiable.

• Low-pass Filters: Low-pass filters are commonly used
for action smoothing, where a filter is applied to the
policy’s output actions before the action is applied to
the environment. Low-pass filters are also not easily
differentiable for policy training.

To evaluate the effectiveness of various smoothing tech-
niques, we record a suite of smoothness metrics, including
mean DoF velocities (rad/s), mean energy (N·rad/s), action
rate (rad/s), robot base acceleration (m/s2), action jitter
(rad/s3), and DoF position jitter (rad/s3). Action rate is the
first derivative of output actions over time. The jitter metrics
represent the third derivative of their respective quantities

[50]. We also record the mean task return, which is calculated
using the linear and angular velocity tracking rewards.

a) Is LCP effective for producing smooth behaviors?:
We train policies with LCP using a GP coefficient of λgp =
0.002. We track various smoothness metrics throughout the
training process, including energy consumption, degrees-
of-freedom (DoF) velocities, DoF accelerations, and ac-
tion rates. We then compare these metrics against policies
trained with and without smoothness rewards. The results
are recorded in Fig. 4. While LCP is not trained with
reward functions that directly minimize these smoothness
metrics, LCP nonetheless produces smooth behaviors that
are similar to policies trained with smoothness rewards. This
demonstrates that LCP can be an effective substitute for
traditional smoothness rewards.

b) How does LCP affect task performance?: In TA-
BLE I(a) and Fig. 5, we compare the task performance of
LCP with policies trained with other smoothing methods.
LCP achieves similar task performance compared to policies
trained solely with smoothness rewards. Policies trained with
low-pass filters tend to exhibit lower task returns, which
may be due to the damping introduced by low-pass filters
that can in turn impair exploration. Policies trained without
smoothing techniques tend to achieve the highest task returns
but exhibit highly jittery behaviors unsuitable for real-world
deployment.

c) What is the effect of the GP coefficient λgp?:
TABLE I(b) shows the performance of LCP with different
GP coefficients λgp. Incorporating a gradient penalty leads
to significantly smoother behaviors. However, with small



TABLE I: Ablation Studies. All policies are trained with three random seeds and tested in 1000 environments for 500 steps,
corresponding to 10 seconds clock time.

Method Action Jitter ↓ DoF Pos Jitter ↓ DoF Velocity ↓ Energy ↓ Base Acc ↓ Task Return ↑
(a) Ablation on Smooth Methods
LCP (ours) 3.21± 0.11 0.17± 0.01 10.65± 0.37 24.57± 1.17 0.06± 0.002 26.03± 1.51
Smoothness Reward 5.74± 0.08 0.19± 0.002 11.35± 0.51 25.92± 0.84 0.06± 0.002 26.56± 0.26
Low-pass Filter 7.86± 3.00 0.23± 0.04 11.72± 0.14 32.83± 5.50 0.06± 0.002 24.98± 1.29
No Smoothness 42.19± 4.72 0.41± 0.08 12.92± 0.99 42.68± 10.27 0.09± 0.01 28.87± 0.85

(b) Ablation on GP Weights (λgp)
LCP w. λgp = 0.0 42.19± 4.72 0.41± 0.08 12.92± 0.99 42.68± 10.27 0.09± 0.01 28.87± 0.85
LCP w. λgp = 0.001 3.69± 0.31 0.21± 0.05 11.44± 1.18 27.09± 4.44 0.06± 0.01 26.32± 1.20
LCP w. λgp = 0.002 (ours) 3.21± 0.11 0.17± 0.01 10.65± 0.37 24.57± 1.17 0.06± 0.002 26.03± 1.51
LCP w. λgp = 0.005 2.10± 0.05 0.15± 0.01 10.44± 0.70 26.24± 3.50 0.05± 0.002 23.92± 2.05
LCP w. λgp = 0.01 0.17± 0.01 0.07± 0.00 2.75± 0.12 5.89± 0.28 0.007± 0.00 16.11± 2.76

(c) Ablation on GP Inputs
LCP w. GP on whole obs (ours) 3.21± 0.11 0.17± 0.01 10.65± 0.37 24.57± 1.17 0.06± 0.002 26.03± 1.51
LCP w. GP on current obs 7.16± 0.60 0.35± 0.03 13.70± 1.50 35.18± 4.84 0.09± 0.005 25.44± 3.73

TABLE II: Sim-to-sim perfomance when transferring policies trained in IsaacGym to Mujoco. All policies are trained with
three random seeds and tested for 3 trials with 500 steps, corresponding to 10 seconds per trial.

Action Jitter ↓ DoF Pos Jitter ↓ DoF Velocity ↓ Energy ↓ Base Acc ↓ Task Return ↑
Fourier GR1 1.47± 0.43 0.34± 0.07 9.54± 1.53 36.38± 2.97 0.08± 0.004 24.33± 1.25
Unitree H1 0.44± 0.03 0.10± 0.007 9.12± 0.38 76.22± 5.81 0.04± 0.005 21.74± 1.40
Berkeley Humanoid 1.77± 0.32 0.12± 0.01 7.92± 0.21 19.99± 0.36 0.06± 0.00 26.50± 0.57

Fig. 7: Real-world deployment. LCP is able to train effective
locomotion policies on a wide range of robots, which can be
directly transferred to the real world.

coefficients (e.g., λgp = 0.001), the policy can develop jittery
behaviors that are dangerous to deploy in the real world.
However, excessively larger coefficients (e.g., λgp = 0.01)
lead to a substantial decline in task return due to overly
smooth and sluggish behaviors. As shown in Fig. 6, large
values of λgp may also lead to slower learning speeds. Our
experiments suggest that λgp = 0.002 strikes an effective
balance between policy smoothness and task performance.

As with other smoothing techniques, some care is required
to tune the GP coefficient for a better performance.

d) Which components of the observation should GP be
applied to?: Since the policies are trained using the ROA for
sim-to-real transfer, the policy’s input consists of the current
observation and a history of past observations. TABLE I(c)
compares the performance of LCP when the gradient penalty
is applied to the whole input observation or only to the
current observation. We find that applying GP on the whole
observation achieves the best performance. Regularizing the
policy only with respect to the current observation can still
lead to non-smooth behaviors due to changes in the history.

e) Sim-to-Sim Transfer: Before deploying models we
test our models in a different simulator Mujoco [25]. As
shown in TABLE II, we observe a slight decrease in task
return compared to IsaacGym for full-sized robots such as
Fourier GR1 and Unitree H1, suggesting that the domain gap
is more significant for larger robots. The overall results show
that LCP performs well in sim-to-sim transfer, providing
confidence for subsequent real-world deployments.

C. Real World Deployment

We deploy LCP models trained with the same reward
functions and λgp = 0.002 on four distinct robots. As shown
in Fig. 1, LCP effectively enables different robots to walk
in the real world. Fig. 7 shows snapshots of the robots’
behaviors over the course of one gait cycle.
Terrains To evaluate the robustness of the learned policies,
we apply the policies in the real world to walk on three
types of terrain: smooth, soft, and rough plane. We measure
the jitter metrics to evaluate LCP’s performance, as shown
in TABLE III. The behaviors of our policies remain smooth



TABLE III: Performance during real-world deployment. Per-
formance for each method is calculated across 3 models
from different training runs. Each model is executed for 10
seconds. Standard deviation is recorded for each test.

Robot Action Jitter ↓ DoF Pos Jitter ↓ DoF Velocity ↓
(a) Smooth Plane
Fourier GR1 1.12± 0.16 0.28± 0.13 10.82± 1.58
Unitree H1 1.11± 0.07 0.14± 0.01 10.95± 0.53
Berkeley Humanoid 1.56± 0.10 0.10± 0.01 4.99± 0.60

(b) Soft Plane
Fourier GR1 1.18± 0.17 0.24± 0.09 10.45± 1.42
Unitree H1 1.18± 0.09 0.15± 0.01 11.80± 0.57
Berkeley Humanoid 1.66± 0.03 0.12± 0.01 6.78± 1.57

(c) Rough Plane
Fourier GR1 1.18± 0.22 0.26± 0.11 11.61± 1.64
Unitree H1 1.20± 0.09 0.14± 0.01 11.68± 0.84
Berkeley Humanoid 1.63± 0.11 0.11± 0.01 5.02± 0.48

in the presence of variations in the terrain and is able to
effective traverse the different surfaces.
External Forces To further test the robustness of our poli-
cies, we apply external forces to the robot in the real world
Fig. 1. The recovery behaviors of our models are shown
in the supplementary video. The LCP models can robustly
recover from unexpected external perturbations.

VII. CONCLUSION

In this work, we present Lipschitz Constrained Policies
(LCP), a simple and general method for training controllers
to produce smooth behaviors amenable to sim-to-real trans-
fer. LCP approximates a Lipschitz constraint on the policy,
implemented in the form of a differentiable gradient penalty
applied during training. Through extensive simulation and
real-world experiments, we show the effectiveness of LCP
in training locomotion controllers for a wide range of real
humanoid robots. While LCP has demonstrated its effective-
ness in real-world locomotion experiments, our results are
still limited to basic walking behaviors. Evaluating LCP on
more dynamic skills, such as running and jumping, would
help further validate this method’s generality.

ACKNOWLEDGEMENT

We extend our gratitude to Fourier Intelligence for their
hardware support, Jiaze Cai, Yiyang Shao, Junfeng Long,
Haoru Xue, and Renzhi Tao for their assistance with real-
world experiments, and Mintae Kim for his valuable advice
on the mathematical formulas. This work was supported in
part by an NSERC Discovery Grant (DGECR-2023-00280).

REFERENCES

[1] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang, “Open-television:
Teleoperation with immersive active visual feedback,” arXiv preprint
arXiv:2407.01512, 2024.

[2] Y. Ze, Z. Chen, W. Wang, T. Chen, X. He, Y. Yuan, X. B. Peng,
and J. Wu, “Generalizable humanoid manipulation with improved 3d
diffusion policies,” arXiv preprint arXiv:2410.10803, 2024.

[3] I. Radosavovic, S. Kamat, T. Darrell, and J. Malik, “Learning
humanoid locomotion over challenging terrain,” 2024. [Online].
Available: https://arxiv.org/abs/2410.03654

[4] F. Liu, Z. Gu, Y. Cai, Z. Zhou, S. Zhao, H. Jung, S. Ha, Y. Chen, D. Xu,
and Y. Zhao, “Opt2skill: Imitating dynamically-feasible whole-body
trajectories for versatile humanoid loco-manipulation,” arXiv preprint
arXiv:2409.20514, 2024.

[5] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[6] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning
a unified policy for manipulation and locomotion,” in Conference on
Robot Learning. PMLR, 2023, pp. 138–149.

[7] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang, “Ex-
pressive whole-body control for humanoid robots,” arXiv preprint
arXiv:2402.16796, 2024.

[8] J. Lasalle, “The ‘bang-bang’ principle,” IFAC Proceedings Volumes,
vol. 1, no. 1, pp. 503–507, 1960, 1st International IFAC
Congress on Automatic and Remote Control, Moscow, USSR, 1960.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S147466701770095X

[9] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” in
Conference on Robot Learning (CoRL), 2021.

[10] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath,
“Hierarchical reinforcement learning for precise soccer shooting skills
using a quadrupedal robot,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
1479–1486.

[11] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2811–2817.

[12] H. Miura and I. Shimoyama, “Dynamic walk of a biped,” The
International Journal of Robotics Research, vol. 3, no. 2, pp. 60–74,
1984.

[13] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal
walking on mabel,” The International Journal of Robotics Research,
vol. 30, no. 9, pp. 1170–1193, 2011.

[14] H. Geyer, A. Seyfarth, and R. Blickhan, “Positive force feedback in
bouncing gaits?” Proceedings of the Royal Society of London. Series
B: Biological Sciences, vol. 270, no. 1529, pp. 2173–2183, 2003.

[15] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” arXiv preprint arXiv:2309.14341, 2023.

[16] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[17] H. Lai, W. Zhang, X. He, C. Yu, Z. Tian, Y. Yu, and J. Wang, “Sim-
to-real transfer for quadrupedal locomotion via terrain transformer,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 5141–5147.

[18] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[19] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Robust and versatile bipedal jumping control through reinforcement
learning,” arXiv preprint arXiv:2302.09450, 2023.

[20] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik, “Adapt-
ing rapid motor adaptation for bipedal robots,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 1161–1168.

[21] H. Duan, B. Pandit, M. S. Gadde, B. J. van Marum, J. Dao, C. Kim,
and A. Fern, “Learning vision-based bipedal locomotion for challeng-
ing terrain,” arXiv preprint arXiv:2309.14594, 2023.

[22] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” Science Robotics, vol. 9, no. 89, p. eadi9579, 2024.

[23] X. Gu, Y.-J. Wang, X. Zhu, C. Shi, Y. Guo, Y. Liu, and J. Chen, “Ad-
vancing humanoid locomotion: Mastering challenging terrains with
denoising world model learning,” arXiv preprint arXiv:2408.14472,
2024.

[24] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani,
C. Liu, and G. Shi, “Omnih2o: Universal and dexterous human-
to-humanoid whole-body teleoperation and learning,” arXiv preprint
arXiv:2406.08858, 2024.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[26] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

https://arxiv.org/abs/2410.03654
https://www.sciencedirect.com/science/article/pii/S147466701770095X
https://www.sciencedirect.com/science/article/pii/S147466701770095X


[27] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 1–8.

[28] I. Radosavovic, B. Zhang, B. Shi, J. Rajasegaran, S. Kamat, T. Darrell,
K. Sreenath, and J. Malik, “Humanoid locomotion as next token
prediction,” arXiv preprint arXiv:2402.19469, 2024.

[29] X. Gu, Y.-J. Wang, and J. Chen, “Humanoid-gym: Reinforcement
learning for humanoid robot with zero-shot sim2real transfer,” arXiv
preprint arXiv:2404.05695, 2024.

[30] Z. Zhuang, S. Yao, and H. Zhao, “Humanoid parkour learning,” arXiv
preprint arXiv:2406.10759, 2024.

[31] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” in arXiv, 2024.

[32] M. Liu, Z. Chen, X. Cheng, Y. Ji, R. Yang, and X. Wang, “Visual
whole-body control for legged loco-manipulation,” arXiv preprint
arXiv:2403.16967, 2024.

[33] X. Cheng, A. Kumar, and D. Pathak, “Legs as manipulator: Pushing
quadrupedal agility beyond locomotion,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
5106–5112.

[34] N. Bohlinger, G. Czechmanowski, M. Krupka, P. Kicki, K. Walas,
J. Peters, and D. Tateo, “One policy to run them all: an end-to-end
learning approach to multi-embodiment locomotion,” arXiv preprint
arXiv:2409.06366, 2024.

[35] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi,
“Learning human-to-humanoid real-time whole-body teleoperation,”
arXiv preprint arXiv:2403.04436, 2024.

[36] C. Zhang, W. Xiao, T. He, and G. Shi, “Wococo: Learning whole-
body humanoid control with sequential contacts,” arXiv preprint
arXiv:2406.06005, 2024.

[37] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song,
L. Yang, Y. Liu, K. Sreenath, et al., “Genloco: Generalized locomotion
controllers for quadrupedal robots,” in Conference on Robot Learning.
PMLR, 2023, pp. 1893–1903.

[38] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
[Online]. Available: https://arxiv.org/abs/1701.07875

[39] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,

“Improved training of wasserstein gans,” 2017. [Online]. Available:
https://arxiv.org/abs/1704.00028

[40] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” 2018. [Online].
Available: https://arxiv.org/abs/1710.10196

[41] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training
for high fidelity natural image synthesis,” 2019. [Online]. Available:
https://arxiv.org/abs/1809.11096

[42] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa,
“Amp: adversarial motion priors for stylized physics-based character
control,” ACM Transactions on Graphics, vol. 40, no. 4, p. 1–20, July
2021. [Online]. Available: http://dx.doi.org/10.1145/3450626.3459670

[43] C. Tessler, Y. Kasten, Y. Guo, S. Mannor, G. Chechik, and X. B. Peng,
“Calm: Conditional adversarial latent models for directable virtual
characters,” in ACM SIGGRAPH 2023 Conference Proceedings,
ser. SIGGRAPH ’23. New York, NY, USA: Association for
Computing Machinery, 2023. [Online]. Available: https://doi.org/10.
1145/3588432.3591541

[44] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, “Ase:
large-scale reusable adversarial skill embeddings for physically
simulated characters,” ACM Transactions on Graphics, vol. 41, no. 4,
p. 1–17, July 2022. [Online]. Available: http://dx.doi.org/10.1145/
3528223.3530110

[45] M. O’Searcoid, Metric spaces. Springer Science & Business Media,
2006.

[46] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[47] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[49] Q. Liao, B. Zhang, X. Huang, X. Huang, Z. Li, and K. Sreenath,
“Berkeley humanoid: A research platform for learning-based control,”
arXiv preprint arXiv:2407.21781, 2024.

[50] T. Flash and N. Hogan, “The coordination of arm movements: an ex-
perimentally confirmed mathematical model,” Journal of neuroscience,
vol. 5, no. 7, pp. 1688–1703, 1985.

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1809.11096
http://dx.doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3588432.3591541
https://doi.org/10.1145/3588432.3591541
http://dx.doi.org/10.1145/3528223.3530110
http://dx.doi.org/10.1145/3528223.3530110
http://arxiv.org/abs/1502.05477

	Introduction
	Related Work
	Background
	Lipschitz Continuity
	Reinforcement Learning

	Lipschitz-Constrained Policies
	Motivating Example
	Lipschitz Constraint as a Differentiable Objective

	Training Setup
	Experiments
	Robot Platforms
	Results
	Real World Deployment

	Conclusion
	References

